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Quantization of Boson Fields in Quantum Geometry
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It is shown that the introduction of an upper limit on the acceleration of particles provides
a natural cutoff on momenta, avoiding the problem of ultraviolet divergencies in local
quantum field theory. Such a cutoff turns out to be related to Planck energy.

1. INTRODUCTION

Quantum field theory (QFT) provides the framework of theoretical description
of particles and their interactions, the latter ones represented by interaction of
several fields of one or several species at the same space–time point. The way
quantum fields interact is determined by the symmetries existing in nature, the
so-called Gauge Symmetries.

Despite the innumerable theoretical predictions and experimental confirma-
tions of QFT, a peculiar difficulty of this theory is the presence of ultraviolet diver-
gencies, related to the pointlike nature of particles. For overcoming the meaningless
infinite expressions, coming from higher order corrections in the perturbative cal-
culations, a renormalization (and regularization) procedure has been developed.
In such a way, the infinities are absorbed in a redefinition of a finite number of
parameters occurring in the theory.

A more sophisticated theory, where the ultraviolet divergencies are cured in
a natural way, is the string theory. Here a fundamental length, the Planck length,
is introduced for taking into account the finite extension of particles (Greenet al.,
1987). Such a minimal observable distance appears also in the framework of quan-
tum gravity, due essentially to the quantum fluctuations of the gravitational field.

The problem of ultraviolet divergencies in local QFT has been recently dis-
cussed in the framework of an absolutely different approach (Feoliet al., 1999a). It
has been shown that the introduction of an upper limit on the proper acceleration of
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particles could free the quantum theory from divergencies originated by the point-
like character of particles or, at least, could reduce the degrees of these divergencies.

Maximal acceleration (MA) of elementary particles is a consequence of quan-
tum geometry theory, proposed by Caianiello in an attempt to unify quantum me-
chanics and general relativity principles (Caianiello, 1980, 1992). This new geo-
metric formulation of quantum mechanics has been developed by interpreting the
quantization as a curvature in the relativistic eight-dimensional space–time tangent
bundleT M8 = M4⊗ T M4, that incorporates both the space–time manifoldM4

and the four-velocity spaceT M4. The usual position and momentum operators
of the Heisenberg algebra are represented as the covariant derivative inT M8, the
quantum commutation relations being treated as the components of the curvature
tensor. It is remarkable that the line element inT M8 intrinsically involves an upper
limit on the proper acceleration of the particle (Caianiello, 1980, 1992).

In Caianiello’s model, MA is interpreted as mass-dependent,Am = 2mc3/h,
wherem is the mass of the particle, or, as we will do in this paper, a universal
constant depending on Planck mass,A = mPc3/h, (see also Brandt, 1983, 1984,
1989; Toller, 1990, 1991). It has several implications for the energy spectrum of
uniformly accelerated particles (Caianielloet al., 1990), the expansion of the very
early universe (Caianielloet al., 1991), the tunneling from nothing (Capozziello
et al., 1994), and the mass of the Higgs boson (Kuwata, 1996; Lambiaseet al.,
1999). It also makes the metric observer-dependent, as conjectured by Gibbons and
Hawking (1977), and lead in a natural way to hadronic confinement (Caianiello
et al., 1988). MA allows the derivation of the generalized uncertainty principle of
string theory (Capozzielloet al., 2000a), and its consequences for particles propa-
gating in Schwarzschild-like geometries have been studied in Feoliet al. (1999b)
and Capozzielloet al. (2000b). Concrete experimental tests of the consequences
of MA have been proposed in Papiniet al. (1995) and Lambiaseet al. (1998).

We also recall that MA is the same cutoff on the acceleration required in an
ad hoc fashion by Sanchez in order to regularize the entropy and the free energy of
quantum strings (De Vega and Sanchez, 1988; Frolov and Sanchez, 1991; Sanchez,
1993), and it is also invoked as a necessary cutoff by McGuigan in the calculation
of black hole entropy (McGuigan, 1994).

The aim of this paper is to show that, by quantizing a massless boson field
in an accelerating frame (Rindler observer), MA provides a natural cutoff on the
momentum that is related to the Planck energy. Such a result is inferred in the
framework of thethermalization theorem. Essentially, this theorem asserts that a
uniformly accelerated particle-detector (with accelerationa) in Minkowski space
will be excited by the quantum field whose statistical distribution is spin-dependent.
The temperatureT of the thermal bath is related to acceleration by the relation (in
natural units)

T = a

2π
· (1)
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If the quantum field is a boson field, the uniformly accelerated observer will detect
the usual Bose–Einstein statistical distribution, whereas, for a fermion field, the
same observer will detect the usual Fermi–Dirac statistical distribution (Takagi,
1986; Unruh and Wald, 1984).

The layout of this paper is as follows: In Section 2 we shortly recall the
quantum corrections to the Rindler geometry induced by MA. Section 3 is devoted
to the quantization of a scalar field in the modified Rindler geometry. Conclusions
are drawn in Section 4.

2. RINDLER GEOMETRY IN CAIANIELLO’S MODEL

The model proposed by Caianiello for including the effects of MA in dyna-
mics was to enlarge the space–time manifold to an eight-dimensional space–time
tangent bundleT M8. In this way the invariant line element is defined as (Caianiello
et al., 1990)

ds̃2 = gABd XA d XB, A, B = 1, . . . , 8, (2)

where the coordinates ofT M8 are

XA =
(

xµ;
1

A
dxµ

ds

)
, µ = 1, . . . , 4, (3)

and

gAB = gµν ⊗ gµν , ds2 = gµν dxµ dxν · (4)

The metric (2) can be written as

ds̃2 = gµν

(
dxµ dxν + 1

A2 dẋµ dẋν
)

, (5)

whereẋµ = dxµ/ds, and an embedding procedure has been developed to find the
effective space–time geometry in which a particle can move when the constraint of
a MA is present (Caianielloet al., 1990). In fact, if we find the parametric equations
that relate the velocity fielḋxµ to the first four coordinatesxµ, we can calculate the
effective four-dimensional metric on the hypersurface locally embedded inT M8.
This procedure strongly depends on the choice of the velocity field of the particle.

Let us consider a portion of space–time spanned by the world lines of uni-
formly accelerated observers

x = 1

a
cosh aτ, x0 = 1

a
sinh aτ, (6)

obtained by varyinga andτ according to the Rindler parameterizationξ = 1/a,
η = aτ (in what follows we work, for simplicity, with a two-dimensional
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space–time, parameterized by (η, ξ )). The corresponding velocity field is

ẋ = sinh η, ẋ0 = cosh η, (7)

so that, from Eq. (5), the Rindler line elementds2 = ξ2dη2− dξ2 is generalized as

dτ̃ 2 =
(
ξ2− 1

A2

)
dη2− dξ2· (8)

We point out that the horizon of this manifold is now given byξ = 1/A, instead
of ξ = 0, as in Rindler geometry. It is represented in the (x, x0) plane by the
MA hyperbolax2− x0 2 = A−2, corresponding to the world line of a uniformly
accelerated particle with constant proper accelerationa = A. The replacing of the
light cone by a hyperbola as the boundary of the Rindler space–time, automatically
provides the horizon regularization. Finally, another important difference from the
usual Rindler geometry is that metric (8) describes a curved manifold with scalar
curvature given by

R= 2

A2 (ξ2−A−2)−2, (9)

and diverges forξ = A−1. Therefore, it is a true physical singularity of the space
and cannot be removed by a change of the coordinate. In the next section, we will
use the modified Rindler geometry for quantizing a massless scalar field and derive
the thermalization theorem.

3. THERMALIZATION THEOREM AND MA

The wave equation for scalar massless particle in curvilinear coordinates is

2φ = 0, (10)

where 2 = (−g)−1/2∂µ(
√−ggµν∂ν) is the D’Alembert operator (Birrell and

Davies, 1982). The wave functions are normalized by means of the inner product

(φ1, φ2) = −i
∫
6

[φ1∂µφ
∗
2 − φ∗2∂µφ1]

√
−g6(x) d6µ, (11)

where bothφ1 andφ2 are solutions of Eq. (10),d6µ = nµd6, with nµ a future-
directed unit versor orthogonal to the spacelike hypersurface6 and d6 is the
volume element in6. The hypersurface6 is taken to be a Cauchy surface in
space–time and it is possible to show, using Gauss theorem, that the value of
(φ1, φ2) is independent of6.



P1: VENDOR/LMD/GFQ P2: GDX/GCP/GCQ/FNV QC: GCQ

International Journal of Theoretical Physics [ijtp] PP131-301578 May 14, 2001 18:57 Style file version Nov. 19th, 1999

Quantization of Boson Fields in Quantum Geometry 1271

In two-dimensional manifold and withgµν given by Eq. (8), we have

(φ1, φ2) = −i
∫

I
[φ1∂ηφ

∗
2 − φ∗2∂ηφ1]gηη

√−g dξ

= −i
∫

I
[φ1∂ηφ

∗
2 − φ∗2∂ηφ1]

(
ξ2−m−2

P

)−1/2
dξ, (12)

whereI = [1/mP,∞[ (we recall thatA = mP).
In Minkowski space–time, wheregµν = diag(1,−1), Eq. (10) becomes(

∂2

∂x02
− ∂2

∂x2

)
ψ(x, x0) = 0, (13)

whose solution is the wave function with positive frequency

ψk(x0, x) = ψ0 eik(x0−x), (14)

with ψ0 a normalization factor. A general solution is

ψ(x0, x) =
∑

k

[bkψk(x, x0)+ b†kψ
∗
k (x, x0)], (15)

wherebk andb†k are interpreted in second quantization as the annihilation and
creation operators, respectively. The Fock space of stated is constructed starting
from the vacuum state,|0〉M .

In the modified Rindler metric (8), Eq. (10) assumes the form[
1

ξ2−m−2
P

∂2

∂η2
− ∂2

∂ξ2
− ξ

ξ2−m−2
P

∂

∂ξ

]
φ(η, ξ ) = 0. (16)

The solution (Abramowitz and Stegun, 1972) is

φω(η, z) = φ0 eiωηF

(
iω,−iω;

1

2
; 1− z

)
, (17)

whereφ0 is a normalization factor,z= 1
2(mPξ + 1), andF is the hypergeometric

function. A general solution in the accelerated frame can be expanded in terms of
positive and negative frequencies

φ(η, z∗) =
∑
ω

[aωφω(η, z∗)+ a†ωφ
∗
ω(η, z∗)]. (18)

Using this decomposition, the Fock space is constructed from the vacuum state,
which is annihilated by the operatoraω, aω|0〉R= 0. The number operatorNω =
a†ωaω will detect particles when evaluated in Minkowski vacuum. This is described
by Bogolubov coefficients connecting the bases of the two frames (inertial and
accelerated) in the following way

aω =
∑

k

[αωkbk + β∗ωkb†k ], (19)
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The evidence of thermal radiation turns out for the accelerated observer when the
Bogolubov coefficientβωk, given by

βωk = −(ψk, φ∗ω) = −i
∫ ∞

1/mP

[ψk∂ηφω − φω∂ηψk]
(
ξ2−m−2

P

)−1/2
dξ , (20)

is different from zero. Its value is

βωk = −π
2
ψ0φ0

k

mP
e−πω/2H (1)

iω+1(k/mP), (21)

and in a similar way, one derives the coefficientαωk

αωk = −π
2
ψ0φ0

k

mP
eπω/2H (2)

iω+1(k/mP), (22)

whereH (1)
iω+1(k/mP) andH (2)

iω+1(k/mP) are the Hankel’s functions. The statistical
distribution is obtained squaring the coefficientβωk

|βωk|2 = π2

4
(ψ0φ0)2 e−πω

k2

m2
P

H (1)
iω+1(k/mP)H (2)

−iω+1(k/mP). (23)

Because of the complexity of Eq. (23), its implications in QFT are very difficult
to analyze exactly. Nevertheless, some considerations can be done. As is well
known, the consequence of combining relativistic quantum mechanics with general
relativity is that no measurements can be done at distances smaller than the Planck
length and that there are no particles heavier than the Planck mass. Then, a theory
valid to the Planck scale has to be valid at any other lower energy scale. One may
ignore higher energy phenomena in a low energy theory, but the opposite is not
true. At the Planck scale, a theory has to be theTheory of Everything, in the sense
that there cannot be any theory of particles beyond it. If ultraviolet divergencies
appear, there is no way to interpret them as coming from a higher energy scale,
as in QFT. Hence, no physical understanding can be given to such ultraviolet
infinities; so the theory has to be exactly finite and not renormalizable finite. This
is also true in quantum geometry. In fact, it reproduces, in the low energy limit,
the usual results of QFT in curved space–time, and in the opposite limit, it leads to
ill-defined quantities making the theory inconsistent. As a consequence, an upper
limit on momenta related to the Planck energy is naturally recovered, resulting in
a finite theory. It is worthwhile to discuss explicitly these two limits.

The Bose–Einstein distribution is recovered from Eq. (23) in the regime of
energies that are far from the Planck one.k/mP < 1,

|βωk|2 ∼ 1

eÄ/kBT − 1
, (24)

whereT is the Davies–Unruh temperature, defined in (1) (Birrell and Davies, 1992).
In deriving (24) we have substituted the Rindler modesω with the proper energy
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Ä = aω of the Rindler particle seen by the observer (Takagi, 1986). Equation (24)
is nothing else but the thermalization theorem. The canonical commutation rela-
tions of the Weyl–Heisenberg algebra are also preserved, as we can see from (19), in
agreement with the usual interpretation of the annihilation and creation operators.

In the limit k/mP À 1, the coefficientsαωk andβωk assume the asymptotic
form (Abramowitz and Stegun, 1972)

αωk = −1

8

√
2

πωmP
e−i (k/mP−3π/4), (25)

βωk = −1

8

√
2

πωmP
ei (k/mP−3π/4), (26)

and using Eq. (19), one finds that, for fixedk, the canonical commutation relation
of operatorsaω anda†ω vanishes,

[aω, a†ω′ ] = 0, ∀ω, ω′. (27)

For each modeω, the Weyl–Heisenberg algebra is not preserved, soaω anda†ω
cannot be interpreted as annihilation and creation operators in Rindler space–time,
making it impossible to build up a Fock space for states. Hence, the constraint on
the acceleration, introduced in a quantum theory of particles, implies the existence
of a cutoff on momenta that, as discussed before, must be given by the Planck
massmP for the consistence of the theory.

4. CONCLUSIONS

The regularizing properties of MA, introduced by Caianiello as a consequence
of his geometrical interpretation of quantum mechanics, have been discussed in
the quantization of a massless scalar field.

We have shown that the consistence of the quantization scheme, carried out
in the Minkowski and Rindler space–times and linked by a Bogolubov transfor-
mation, requires the introduction of a cutoff on the momentum, related to the MA.
The latter one provides a natural length (and energy) scale, so that the ultraviolet
divergencies are removed in a natural way, without appealing to the renormali-
zation and regularization techniques of QFT. Such a result is consistent with all
theories trying to unify particles and their interactions, including gravity.

From this point of view, quantum geometry is very close to string theory, al-
though the concept of extended nature of particles is introduced in a different way.
In quantum geometry, in fact, the finite extension of a particle is provided by MA,
whose effects become relevant for high values of the acceleration, hence for high
energy regimes, whereas in string theory, it is intrinsically contained in the defini-
tion of the action of a particle. Such a strict relation between quantum geometry
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and string theory has been recently discussed also in the paper by Capozziello
et al. (2000a), in which the generalized uncertainty principle of strings has been
derived from the canonical commutation relations in acurvedspace–time induced
by the existence of an upper limit on the acceleration of particles.
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